Chapter 5. Solving Linear Inequations in One Variable

Formulae

Two permissible rules:

1. Addition - Subtraction Rule:

If the same number or expression is added to or subtracted from both sides of an inequation, the resulting inequation has the same solution (or solutions) as the original.
2. Multiplication - Division Rule:
(i) If both sides of an inequation are multiplied or divided by the same positive number, the resulting inequation has the same solution (or solutions) as the original.
(ii) If both sides of an inequation are multiplied or divided by the same negative number, the resulting inequation has the same solution (or solutions) as the original if the symbol of the inequality is reversed.
Thus, the only difference between solving a linear equation and solving an inequation concerns multiplying or dividing both sides by a negative number. Therefore, always reverse the symbol of an inequation when multiplying or dividing by a negative number.
3. Properties of absolute values:
(i) $\quad|-x|=|x| \forall x \in \mathrm{R}$
(ii) $|x y|=|x| \quad|y|, \forall x, y \in \mathrm{R}$.
(iii) $\left|\frac{x}{y}\right|=\frac{|x|}{|y|} \forall x, y \in \mathrm{R} \& y \neq 0$
(iv) $|x|=\sqrt{x^{2}} \forall x \in \mathrm{R}$
(v) If $a>0$,
then $|x| \leq a \Leftrightarrow-a \leq x \leq a$
$|x| \geq a \Leftrightarrow x \geq a$ or $x \leq-a$.

Determine the Following

Question 1. Give that $x \in I$. Solve the inequation and graph the solution on the number line:

$$
3 \geq \frac{x-4}{2}+\frac{x}{3} \geq 2
$$

Solution: $\quad 3 \geq \frac{x-4}{2}+\frac{x}{3} \geq 2$
$\Rightarrow \quad 3 \geq \frac{3(x-4)+2 x}{6} \geq 2$
$\Rightarrow \quad 18 \geq 5 x-12 \geq 12$
$\Rightarrow \quad 30 \geq 5 x \geq 24$

$\Rightarrow \quad$| | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | $\frac{24}{5} \leq x \leq 6$ | | | | | | | |
| -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 | 6 |

\therefore The solution set $=(5,6)$
Ans.

Question 2. Graph the solution set for each inequality:
(i) $x \geq-3$
(ii) $x<4$
(iii) $-3<x<5$
(iv) $5 \leq x<10$
(v) $-3<x \leq 8$
(vi) $-3 \leq x \leq 3$.

Solution : (i) We shade a number line to the right of -3 . The darkened circle shows -3 is included.

(ii) We shade a number line to the left of 4 . The open circle shows that 4 is not included.

(iii) The graph of $-3<x<5$ is all the numbers between 3 and 5 .

(iv) The graph of $5 \leq x<10$ consists of all the numbers between 5 and 10 as well as 5 .

(v) The graph of $-3<x \leq 8$ consists of all the numbers between -3 and 8 as well as 8 .

(vi) The graph of $-3 \leq x \leq 3$ consists of all the numbers between -3 and 3 as well as 3 and - 3 .

Question 3. Solve the given inequation and graph the solution on the number line

$$
2 y-3<y+1 \leq 4 y+7, y \in \mathbf{R}
$$

Solution: $\quad 2 y-3<y+1 \leq 4 y+7$

$$
y-3<1 \leq 3 y+7
$$

$$
y<4 \text { and } 3 y \geq-6
$$

$$
y \geq-2
$$

$$
-2 \leq y<4
$$

Question 4. Given that $x \in R$, solve the following inequality and graph the solution on the number line:

$$
-1 \leq 3+4 x<23
$$

Solution: $\quad-1 \leq 3+4 x<23$

$$
\begin{aligned}
-1-3 & \leq 3+4 x-3<23-3 \\
-4 & \leq 4 x<20 \\
-\frac{4}{4} & \leq x<\frac{20}{4} \\
-1 & \leq x<5 .
\end{aligned}
$$

Solution Set $=\{x:-1 \leq x \leq 5, x \in R\}$

Question 5. Given:

$$
\begin{aligned}
\mathrm{P} & =\{x: 5<2 x-1 \leq 11, x \in \mathrm{R}\} \\
\mathrm{Q} & =\{x:-1 \leq 3+4 x<23, x \in 1\}
\end{aligned}
$$

where $\mathrm{R}=$ (real number), $\mathrm{I}=$ (Integers) Represent P and Q on number lines. Write down the elements of $P \cap Q$.

Solution:

$P \cap Q=\{4\}$.
Question 6. Solve $2 \leq 2 x-3 \leq 5, x \in R$ and mark it on a number line.

Solution: $2 \leq 2 x-3 \leq 5, x \in \mathrm{R}$
$2 \leq 2 x-3 ; \quad 2 x-3 \leq 5$
$2+3 \leq 2 x ; \quad 2 x \leq 5+3$
$5 \leq 2 x ; \quad 2 x \leq 8$
or $\quad 2 x \geq 5$; $\quad x \leq 4$
or
$x \geq \frac{5}{2}$
$\therefore \quad x \geq 2 \frac{1}{2}$ and $x \leq 4$ (solution set is $2.5 \leq x \leq 4$)

Question 7. For each inequality, determine which of the given numbers are in the solution set:
(i) $2 x+3>11 ;-3,4,5,7$
(ii) $16-5 x \leq-4 ; 4,-3,10$.

Solution: (i) If $x=-3$.
Then $\quad 2 x+3=2 \times(-3)+3=-3$
Since, $-3>11$ is false.
So -3 is not in the solution of $2 x+3>11$
If, $x=4$, then $2 x+3=2 \times 4+3=11$
since $11>11$ is false.
So, 4 is not in the solution of $2 x+3>11$
if $x=5$, then $2 x+3=2 \times 5+3=13$
Since, $13>11$ is true :
So, 5 is in the solution of $2 x+3>11$
Similarly, $x=7$ is in the solution of $2 x+3>11$.
Ans.
(ii) If $x=4$, then $16-5 x=16 \rightarrow 5 \times 4=-4$

Since, $-4 \leq-4$ is true.
So, $x=4$ is in the solution of $16-5 x \leq-4$
if $x=-3$, then $16-5 x=16-5 \times-3=31$
Since, $31 \leq-4$ is false.
So, $x=-3$ is not in the solution of $16-5 x \leq-4$
if $x=10$, then $16-5 x=16-5 \times 10=-34$
Since, $-34 \leq-4$ is true.
So, $x=10$ is in the solution of $16-5 x \leq-4$.

Question 8. Graph the solution sets of the following inequalities:
(i) $2 x-4>3, x \in \mathrm{~W}$
(ii) $3 x-5 \leq-7, x \in \mathrm{I}$.

Solution: (i) $2 x-4>3$

$$
\begin{aligned}
& 2 x>3+4 \Rightarrow 2 x>7 \\
& x>7 / 2 \Rightarrow x>3.5 \\
& x=\{4,5,6, \ldots \ldots\}
\end{aligned}
$$

(ii)

$$
\begin{aligned}
3 x-5 & \leq-7, x \in I \\
3 x & <5+(-7) \\
3 x & \leq-2 \\
x & \leq-2 / 3 \\
x & =\{\ldots \ldots,-3,-2,-1\}
\end{aligned}
$$

Question 9. Solve the equation and represent the solution set on the number line.

$$
-3+x \leq \frac{8 x}{3}+2 \leq \frac{14}{3}+2 x \text {, where } x \in I
$$

Solution:

$$
\left.\begin{array}{rlrlrl}
-3+x \leq \frac{8 x}{3} & +2 & \leq \frac{14}{3}+2 x, x \in \mathrm{I}, \\
-3+x & \leq \frac{8 x}{3}+2, & \frac{8 x}{3}+2 & \leq \frac{14}{3}+2 x \\
& \text { or } & \frac{8 x}{3}-x & \geq-3-2, & \frac{8 x}{3}-2 x & \leq \frac{14}{3}-2 \\
& \text { or } & \frac{5 x}{3} & \geq-5, & \frac{2 x}{3} & \leq \frac{8}{3} \\
& & & & \geq-15, & 2 x
\end{array} \leq 8\right)
$$

Solution set $\{-3,-2,-1,0,1,2,3,4\}$ Ans.
Number line

Question 10. Solve the following inequation and represent the solution set on the number line:
$4 x-19<\frac{3 x}{5}-2 \leq \frac{-2}{5}+x, x \in \mathrm{R}$
Solution : $4 x-19<\frac{3 x}{5}-2 \leq \frac{-2}{5}+x, x \in \mathrm{R}$

$$
\begin{aligned}
\therefore \quad 4 x-19 & <\frac{3 x}{5}-2, \\
4 x-\frac{3 x}{5} & <-2+19, \\
\frac{17 x}{5} & <17, \\
x & <5,
\end{aligned}
$$

$$
\text { and } \quad \frac{3 x}{5}-2 \leq \frac{-2}{5}+x
$$

$$
\frac{3 x}{5}-x \leq \frac{-2}{5}+2
$$

$$
-2 x \leq 8
$$

$$
x \geq-4
$$

$$
\Rightarrow \quad-4 \leq x<5
$$

Question 11. Solve the following in equalities and graph their solution set
$\mathrm{A}=\{x: 11 x-5 \geq 7 x+3, x \in \mathrm{R}\}$ and
$\mathrm{B}=\{x: 18 x-9 \geq 15+12 x, x \in \mathrm{R}\}$
Solution : $\mathrm{A}=\{x: 11 x-5 \geq 7 x+3, x \in \mathrm{R}\}$

$$
\begin{align*}
& =\{x: 11 x-7 x \geq 3+5, x \in \mathrm{R}\} \\
& =\{x: 4 x \geq 8, x \in \mathrm{R}\} \\
& =\{x: x \geq 2, x \in \mathrm{R}\} \tag{i}
\end{align*}
$$

Also

$$
\begin{align*}
\mathrm{B} & =\{x: 18 x-9 \geq 15+12 x, x \in \mathrm{R}\} \\
& =\{x: 18 x-12 x \geq 15+9, x \in \mathrm{R}\} \\
& =\{x: 6 x \geq 24, x \in \mathrm{R}\} \\
& =\{x: x \geq 4, x \in \mathrm{R}\} \tag{ii}
\end{align*}
$$

\therefore on number line,

$\therefore \mathrm{A} \cap \mathrm{B}:(x: x \geq 4, x \in \mathrm{R})$
i.e. $\mathrm{A} \cap \mathrm{B}:$

Question 12. Solve the following inequation and graph the solution set,
(i) $2 x-3 \leq x+2 \leq 3 x+5 x \in \mathrm{R}$.
(ii) $2 x-5 \leq 5 x+4<11 n \in R$.

Solution: (i) Here, $2 x-3 \leq x+2 \leq 3 x+5$
$\Rightarrow \quad 2 x-3 \leq x+2$ and $x+2 \leq 3 x+5$
$\Rightarrow \quad x \leq 5$ and $x \geq \frac{-3}{2}$
\therefore Solution set $=\left\{x: \frac{-3}{2} \leq x \leq 5\right.$ and $\left.x \in \mathbf{R}\right\}$.

(ii) Here, $\quad 2 x-5 \leq 5 x+4<11$

$$
\begin{array}{lc}
\Rightarrow & 2 x-5 \leq 5 x+4 \text { and } 5 x+4<11 \\
\Rightarrow & -3 x \leq 9 \text { and } 5 x<7 \\
\Rightarrow & x \geq-3 \text { and } x<\frac{7}{5}
\end{array}
$$

\therefore Solution set $=\left\{x:-3 \leq x<\frac{7}{5}\right.$ and $\left.x \in \mathrm{R}\right\}$.

Ans.

Question 13. Solve the following inequation and graph the solution on the number line.

$$
-2 \frac{2}{3} \leq x+\frac{1}{3}<3 \frac{1}{3} ; x \in \mathrm{R}
$$

Solution : The given inequation has two parts :

$$
\begin{aligned}
-2 \frac{2}{3} & \leq x+\frac{1}{3} \text { and } x+\frac{1}{3}<3 \frac{1}{3} \\
-\frac{8}{3} & \leq x+\frac{1}{3} \text { and } x+\frac{1}{3}<\frac{10}{3} \\
-\frac{8}{3}-\frac{1}{3} & \leq x \text { and } x<\frac{10}{3}-\frac{1}{3} \\
-\frac{9}{3} & \leq x \text { and } x<\frac{9}{3} \\
-3 & \leq x \text { and } x<3 \\
\therefore \quad-3 & \leq x<3
\end{aligned}
$$

The required graph line is :

Question 14. Solve the following inequalities and represent the solution on a number line:
(i) $2 x+3<5$
(ii) $3 x+4 \leq x+8$
(iii) $2 x-3>5 x+4$
(iv) $4-2 x \geq 6-3 x$
(v) $3(x-2)>1$
(vi) $\frac{2 x+5}{4}>\frac{4-3 x}{6}$
(vii) $\frac{3 x}{2}+\frac{1}{4}>\frac{5 x}{8}-\frac{1}{2}$.

Solution : (i) We have, $2 x+3<5$

$$
\begin{array}{ll}
\Rightarrow & 2 x<5-3 \\
\Rightarrow & 2 x<2 \\
\Rightarrow & x<1
\end{array}
$$

The graph of the solution set is

$$
\{x<1\}
$$

Ans.
(ii) We have, $3 x+4 \leq x+8$

$$
\begin{array}{cc}
\Rightarrow & 3 x-x \leq 8-4 \\
& \text { [Bring like terms on one side] } \\
\Rightarrow & 2 x \leq 4 \\
\Rightarrow & x \leq 2
\end{array}
$$

The graph of the solution set is

$$
x \leq 2
$$

Ans.
(iii) We have the inequality

$$
\begin{array}{rlrl}
& & 2 x-3 & >5 x+4 \\
\Rightarrow & -3-4 & >5 x-2 x \\
\Rightarrow & -7 & >3 x \text { or } x<-7 / 3
\end{array}
$$

The graph of the solution set is

(iv) We have the inequality

$$
\begin{aligned}
& & 4-2 x & \geq 6-3 x \\
\Rightarrow & & 3 x-2 x & \geq 6-4 \\
\Rightarrow & & x & \geq 2
\end{aligned}
$$

The graph of the solution set is

(v) The given inequality is

$$
\begin{aligned}
& & 3(x-2) & >1 \\
\Rightarrow & & 3 x-6 & >1 \\
\Rightarrow & & 3 x & >7 \Rightarrow x>7 / 3
\end{aligned}
$$

The graph of the solution set is given by

$$
x>7 / 3 .
$$

(vi) The given inequality is

$$
\begin{aligned}
& & \frac{2 x+5}{4} & >\frac{4-3 x}{6} \\
\Rightarrow & & 6(2 x+5) & >4(4-3 x) \\
\Rightarrow & & 12 x+30 & >16-12 x \\
\Rightarrow & & 12 x+12 x & >16-30 \\
\Rightarrow & & 24 x & >-14 . \\
\Rightarrow & & x & >\frac{-14}{24} \\
\Rightarrow & & x & >-7 / 12 .
\end{aligned}
$$

The graph of solution set is $x>-7 / 12$

(vii) The given inequality is

$$
\begin{aligned}
& \frac{3 x}{2}+\frac{1}{4}>\frac{5 x}{8}-\frac{1}{2} \\
& \Rightarrow \quad \frac{3 x}{2}-\frac{5 x}{8}>-\frac{1}{2}-\frac{1}{4} \\
& \Rightarrow \quad \frac{12 x-5 x}{8}>\frac{-2-1}{4} \\
& \Rightarrow \quad \frac{7 x}{8}>\frac{-3}{4} \Rightarrow 4(7 x)>-3 \times 8 \\
& \Rightarrow \quad 28 x>-24 \\
& \Rightarrow \quad x>\frac{-24}{28} \\
& x>-6 / 7
\end{aligned}
$$

The graph of the solution set is

Question 15. Solve the following inequalities and represent the solution set on a number line:
(i) $-4 \leq 2 x-3 \leq 5$
(ii) $-3<-\frac{1}{2}-\frac{2 x}{3} \leq \frac{5}{6}, x \in \mathrm{R}$.
(iii) $0<\frac{3 x-2}{4} \leq 2$
(iv) $0 \leq \frac{3-2 x}{4} \leq 1$
(v) $3>\frac{2(3-4 x)}{7} \geq-2$.

Solution: (i) The given inequality

$$
-4 \leq 2 x-3 \leq 5
$$

is equivalent to

$$
\begin{aligned}
& & 3-4 & \leq 2 x \leq 5+3 \\
\Rightarrow & & -1 & \leq 2 x \leq 8 \\
\Rightarrow & & -\frac{1}{2} & \leq x \leq 4
\end{aligned}
$$

The graph of this set is

$$
-1 / 2 \leq x \leq 4
$$

(ii) $\quad-3<-\frac{1}{2}-\frac{2 x}{3} \leq \frac{5}{6}$
$\Rightarrow \quad-18<-3-4 x \leq 5$
$\Rightarrow \quad-15<-4 x \leq 8$
$\Rightarrow \quad-2 \leq x<\frac{15}{4}$

(iii) The given inequality is

$$
0<\frac{3 x-2}{4} \leq 2
$$

Which is equivalent to

$$
\begin{array}{rlrl}
& & 0 & <3 x-2 \leq 8 \\
\Rightarrow & 2 & <3 x \leq 8+2 \\
\Rightarrow & 2 & <3 x \leq 10 \\
\Rightarrow & 2 / 3 & <x \leq 10 / 3
\end{array}
$$

The graph of this set is

$$
2 / 3<x \leq 10 / 3 .
$$

Ans.
(iv) The given inequality is

$$
0 \leq \frac{3-2 x}{4} \leq 1
$$

same as part (iii) solve yourself.
(v) The given inequality

$$
3>\frac{2(3-4 x)}{7} \geq-2
$$

which is equivalent to

$$
\begin{array}{lc}
\Rightarrow & 3 \times 7>2(3-4 x) \geq-2 \times 7 \\
\Rightarrow & \frac{21}{2}>3-4 x \geq-7 \\
\Rightarrow & -3+\frac{21}{2}>-4 x \geq-7-3 \\
\Rightarrow & \frac{15}{2}>-4 x \geq-10
\end{array}
$$

we divide this compound inequality by -4 and reverse the inequality signs to obtain

$$
\frac{15}{2 \times(-4)}<x \leq \frac{-10}{-4}
$$

$\Rightarrow \quad \frac{15}{-8}<x \leq \frac{5}{2}$
The graph of this set is

Question 16. Solve the following inequation, write the solution set and represent it on the number line:

$$
\begin{aligned}
-\frac{x}{3} \leq \frac{x}{2}-1 \frac{1}{3}<\frac{1}{6}, x & \in \mathrm{R} \\
\text { Solution }:-\frac{x}{3} \leq \frac{x}{2}-1 \frac{1}{3} & <\frac{1}{6}, x \in R \\
-\frac{x}{3} & \leq \frac{x}{2}-1 \frac{1}{3} \\
-\frac{x}{3} & \leq \frac{x}{2}-\frac{4}{3} \\
\frac{4}{3} & \leq \frac{x}{2}+\frac{x}{3} \\
\frac{4}{3} & \leq \frac{5 x}{6} \\
\frac{6}{5} \times \frac{4}{3} & \leq x \\
\frac{8}{5} & \leq x \\
\frac{x}{2}-1 \frac{1}{3} & <\frac{1}{6} \\
\frac{x}{2} & <\frac{1}{6}+\frac{4}{3} \\
\frac{x}{2} & <\frac{1+8}{6} \\
x & <\frac{9 \times 2}{6} \\
x & <3
\end{aligned}
$$

From (1) and (2)

$$
\begin{aligned}
& \frac{8}{5} \leq x<3 \\
& \text { or } \quad 1.6 \leq x<3
\end{aligned}
$$

\therefore Solution set $\{x: 1 \cdot 6 \leq x<3, x \in \mathrm{R}\}$

Question 17. Find the values of x , which satisfy the inequation $-2 \frac{5}{6}<\frac{1}{2}-\frac{2 x}{3} \leq 2, x \in W$. Graph the solution set on the number line.

Solution: $-2 \frac{5}{6}<\frac{1}{2}-\frac{2 x}{3} \leq 2$
Taking, $\quad-2 \frac{5}{6}<\frac{1}{2}-\frac{2 x}{3}$

$$
\begin{align*}
-\frac{17}{6} & <\frac{1}{2}-\frac{2 x}{3} \\
-\frac{17}{6}-\frac{1}{2} & <-\frac{2 x}{3} \\
\frac{-17-3}{6} & <-\frac{2 x}{3} \\
-\frac{20}{6} & <-\frac{2 x}{3} \\
\Rightarrow \frac{10}{3} & >\frac{2 x}{3} \\
5 & >x \tag{1}
\end{align*}
$$

Now taking, $\frac{1}{2}-\frac{2 x}{3} \leq 2$

$$
\begin{align*}
-\frac{2 x}{3} & \leq 2-\frac{1}{2} \\
-\frac{2 x}{3} & \leq \frac{3}{2} \\
-x & \leq \frac{9}{4} \Rightarrow x \geq-\frac{9}{4} \tag{2}
\end{align*}
$$

From (1) and (2), we get

$$
-\frac{9}{4} \leq x<5 \Rightarrow-2 \frac{1}{4} \leq x<5
$$

Required number line,

Question 18. Solve the following inequalities in the given universal set:
(i) $3 x-5>x+7 ; x \in \mathrm{~N}$
(ii) $4 x+2 \leq 2 x-7 ; x \in \mathrm{I}$
(iii) $5 x-3<6 x-2 ; x \in \mathrm{~N}$
(iv) $2 x-5 \leq 5 x+4<11$, where $x \in \mathrm{I}$.

Solution: (i) We have

$$
\begin{aligned}
& & 3 x-5 & >x+7 \\
\Rightarrow & & 3 x-x & >7+5 \\
\Rightarrow & & 2 x & >12 \\
\Rightarrow & & x & >6
\end{aligned}
$$

As $x \in \mathrm{~N}, x$ can take values $7,8,9,10$,
This set is drawn on the number line as follow.

Ans.
(ii) We have

$$
\begin{aligned}
& 4 x+2 \leq 2 x-7 ; x \in I \\
& \Rightarrow \quad 4 x-2 x \leq-7-2 \\
& \Rightarrow \quad 2 x \leq-9 \\
& \Rightarrow \quad x \leq-9 / 2
\end{aligned}
$$

As $x \in I, x$ can take values $-5,-6,-7$,
so $\quad x=\{-, 5,-6,-7,-8$, \qquad
This set can be drawn on number line as
$x \leq-9 / 2$.

Ans.
(iii) We have

$$
\begin{aligned}
& 5 x-3<6 x-2 ; x \in \mathrm{~N} \\
& \Rightarrow \quad 5 x-6 x<-2+3 \\
& \Rightarrow \quad-x<1 \\
& \Rightarrow \quad x>-1
\end{aligned}
$$

As $x \in N$, so x be the set of all natural numbers.

The given set can be represent on number line as

$$
x=\mathrm{N} .
$$

(iv) $2 x-5 \leq 5 x+4<11, x \in$ I

$$
\begin{aligned}
2 x-5 & \leq 5 x+4 \\
2 x-5 x & \leq 4+5 \\
-3 x & \leq 9 \\
3 x & \geq-9 \\
x & \geq-3 \\
-3 & \leq x \\
5 x+4 & <11 \\
5 x & <11-4 \\
5 x & <7 \\
x & <\frac{7}{5} \\
x & <1 \frac{2}{5}
\end{aligned}
$$

or

From (1) and (2) $-3 \leq x<1 \frac{2}{5}, x \in \mathrm{I}$
\therefore Solution set $=\{-3,-2,-1,0,1\}$

Question 19. Find the solution set of the following inequalities and draw the graph of their solutions sets:
(i) $|x+5|<8$
(ii) $|x-1|>3$
(iii) $|3-2 x| \geq 2$
(iv) $\left|\frac{x-5}{3}\right|<6$
(v) $\frac{3}{|x-2|}>5$.

Solution: (i) We have

$$
|x+5|<8
$$

Using prop. $|x|<a \Leftrightarrow-a<x<a$
$\Rightarrow \quad-8<x+5<8$
$\Rightarrow \quad-5-8<x<8-5$
$\Rightarrow \quad-13<x<3$
The graph of this set is

(ii) We have

$$
|x-1|>3
$$

Using prop. $|x| \geq a \Leftrightarrow x \geq a$ or $x \leq-a$
Then $|x-1|>3 \Leftrightarrow x-1>3$ or $x-1<(-3)$
$\Rightarrow \quad x>4 \quad$ or $x<-2$
so $|x-1|>3(x: x<-2$ or $x>4\}$
The graph of this set is

(iii) We have

$$
|3-2 x| \geq 2
$$

Using prop. $|x| \geq a \Leftrightarrow x \geq a$ or $x \leq-a$

$$
|3-2 x| \geq 2
$$

$$
\text { or } \quad 3-2 x \leq-2 \text { or }(3-2 x) \geq 2
$$

$$
\Rightarrow \quad-2 x \leq-5 \text { or }-2 x \geq-1
$$

$$
\Rightarrow \quad 2 x \leq 1 \text { or } 2 x \geq 5
$$

$$
\Rightarrow \quad x \leq \frac{1}{2} \text { or } \quad x \geq \frac{5}{2}
$$

$$
\text { or } \quad|3-2 x| \geq 2 \Rightarrow\left\{x: x \leq \frac{1}{2} \text { or } x \geq \frac{5}{2}\right\}
$$

The graph of this set is

(iv) We have $\left|\frac{x-5}{3}\right|<6$

Using prop. $|x|<a \Rightarrow-a<x<a$

$$
\begin{aligned}
\left|\frac{x-5}{3}\right|<6 & \Rightarrow-6<\frac{x-5}{3}<6 \\
& \Rightarrow-18<x-5<18 \\
& \Rightarrow 5-18<x<18+5 \\
& \Rightarrow-13<x<23
\end{aligned}
$$

So $\left|\frac{x-5}{3}\right|<6 \Rightarrow\{x:-13<x<23\}$

The graph of this set is

(v) We have $\frac{3}{|x-2|}<5$

$$
\begin{aligned}
3 & >5|x-2| \\
5|x-2| & <3 \\
|x-2| & <\frac{3}{5}
\end{aligned}
$$

Using property $|x|<a=-a<x<a$
$\therefore \quad-\frac{3}{5}<x-2<\frac{3}{5}$
$\Rightarrow \quad-\frac{3}{5}+2<x<\frac{3}{5}+2$
$\Rightarrow \quad \frac{7}{5}<x<\frac{13}{5}$
So $\quad \frac{3}{|x-2|}<5$
$\Rightarrow\left\{x: \frac{7}{5}<x<\frac{13}{5}\right\}$.
The graph of this set is

Question 20. Solve the following inequalities and graph their solution set:
(i) $\frac{2 x-5}{x+2}<2$
(ii) $\frac{x+8}{x+1}>1$.

Solution: (i) The inequality $\frac{2 x-5}{x+2}<2$ is
equiva-lent to $\frac{2 x-5}{x+2}-2<0 \Leftrightarrow \frac{2 x-5-2 x-4}{x+2}<0$

$$
\Rightarrow \quad \frac{-9}{x+2}<0
$$

But $\quad \frac{a}{b}<0, a<0 \Rightarrow b>0$
Thus, $\frac{-9}{x+2}<0,-9<0 \Rightarrow x+2>0 \Rightarrow x>-2$
The graph of this solution is

$$
x>-2
$$

Ans.
(ii) The inequality $\frac{x+8}{x+1}>1$ is equivalent to

$$
\begin{array}{ll}
& \quad \frac{x+8}{x+1}-1>0 \Leftrightarrow \frac{x+8-x-1}{x+1}>0 \\
\Rightarrow \quad & \frac{7}{x+1}=0 \\
\text { but } \quad \frac{a}{b}>0, a>0 \Leftrightarrow b>0
\end{array}
$$

Thus, $\frac{7}{x+1}>0,7>0 \Rightarrow x+1>0$ or $x>-1$
The graph of this set is

